Meta-Sketch: A Neural Data Structure for Estimating Item Frequencies of Data Streams
نویسندگان
چکیده
To estimate item frequencies of data streams with limited space, sketches are widely used in real applications, including real-time web analytics, network monitoring, and self-driving. Sketches can be viewed as a model which maps the identifier stream to corresponding frequency domain. Starting from premise, we envision neural structure, term meta-sketch, go beyond basic structure conventional sketches. The meta-sketch learns sketching abilities meta-tasks constituted synthetic datasets following Zipf distributions pre-training phase, fast adapted (skewed) adaption phase. Extensive experiments demonstrate performance gains offer insights into our proposals.
منابع مشابه
A Sketch-based Clustering Algorithm for Uncertain Data Streams
Due to the inaccuracy and noisy, uncertainty is inherent in time series streams, and increases the complexity of streams clustering. For the continuous arriving and massive data size, efficient data storage is a crucial task for clustering uncertain data streams. With hash-compressed structure, an extended uncertain sketch and update strategy are proposed to store uncertain data streams. And ba...
متن کاملEstimating Missing Data in Data Streams
Networks of thousands of sensors present a feasible and economic solution to some of our most challenging problems, such as real-time traffic modeling, military sensing and tracking. Many research projects have been conducted by different organizations regarding wireless sensor networks; however, few of them discuss how to estimate missing sensor data. In this research we present a novel data e...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولDeterministically Estimating Data Stream Frequencies
We consider updates to an n-dimensional frequency vector of a data stream, that is, the vector f is updated coordinate-wise by means of insertions or deletions in any arbitrary order. A fundamental problem in this model is to recall the vector approximately, that is to return an estimate f̂ of f such that ∣f̂i − fi∣ < ∥f∥p, for every i = 1, 2, . . . , n, where is an accuracy parameter and p is th...
متن کاملEstimating Entropy over Data Streams
We present an algorithm for estimating entropy of data streams consisting of insertion and deletion operations using Õ(1) space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2023
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v37i6.25846